基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Sensor network basically has many intrinsic limitations such as energy consumption, sensor coverage and connectivity, and sensor processing capability. Tracking a moving target in clusters of sensor network online with less complexity algorithm and computational burden is our ultimate goal. Particle filtering (PF) technique, augmenting handoff and K-means classification of measurement data, is proposed to tackle the tracking mission in a sensor network. The handoff decision, an alternative to multi-hop transmission, is implemented for switching between clusters of sensor nodes through received signal strength indication (RSSI) measurements. The measurements being used in particle filter processing are RSSI and time of arrival (TOA). While non-line-of-sight (NLOS) is the dominant bias in tracking estimation/accuracy, it can be easily resolved simply by incorporating K-means classification method in PF processing without any priori identification of LOS/NLOS. Simulation using clusters of sensor nodes in a sensor network is conducted. The dependency of tracking performance with computational cost versus number of particles used in PF processing is also investigated.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Practical Target Tracking Technique in Sensor Network Using Clustering Algorithm
来源期刊 无线传感网络(英文) 学科 工学
关键词 Sensor Network HANDOFF Scheme Particle Filter K-MEANS Clustering NLOS
年,卷(期) 2012,(11) 所属期刊栏目
研究方向 页码范围 264-272
页数 9页 分类号 TN92
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Sensor
Network
HANDOFF
Scheme
Particle
Filter
K-MEANS
Clustering
NLOS
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
无线传感网络(英文)
月刊
1945-3078
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
358
总下载数(次)
0
总被引数(次)
0
论文1v1指导