基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The aim of this paper is to show the accuracy and time results of a text independent automatic speaker recognition (ASR) system, based on Mel-Frequency Cepstrum Coefficients (MFCC) and Gaussian Mixture Models (GMM), in order to develop a security control access gate. 450 speakers were randomly extracted from the Voxforge.org audio database, their utterances have been improved using spectral subtraction, then MFCC were extracted and these coefficients were statistically analyzed by GMM in order to build each profile. For each speaker two different speech files were used: the first one to build the profile database, the second one to test the system performance. The accuracy achieved by the proposed approach is greater than 96% and the time spent for a single test run, implemented in Matlab language, is about 2 seconds on a common PC.
推荐文章
基于基音周期与清浊音信息的梅尔倒谱参数
说话人确认
梅尔倒谱参数
基音频率
清浊音信息
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
基于MFCC与CHMM的方向指令语音识别
语音识别
连续马尔可夫模型
方向指令
梅尔频率倒谱系数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Text Independent Automatic Speaker Recognition System Using Mel-Frequency Cepstrum Coefficient and Gaussian Mixture Models
来源期刊 信息安全(英文) 学科 工学
关键词 AUTOMATIC SPEAKER RECOGNITION Access Control VOICE RECOGNITION BIOMETRICS
年,卷(期) 2012,(4) 所属期刊栏目
研究方向 页码范围 335-340
页数 6页 分类号 TP39
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
AUTOMATIC
SPEAKER
RECOGNITION
Access
Control
VOICE
RECOGNITION
BIOMETRICS
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息安全(英文)
季刊
2153-1234
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
230
总下载数(次)
0
论文1v1指导