基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In statistical modeling area, the Akaike information criterion AIC, is a widely known and extensively used tool for model choice. The φ-divergence test statistic is a recently developed tool for statistical model selection. The popularity of the divergence criterion is however tempered by their known lack of robustness in small sample. In this paper the penalized minimum Hellinger distance type statistics are considered and some properties are established. The limit laws of the estimates and test statistics are given under both the null and the alternative hypotheses, and approximations of the power functions are deduced. A model selection criterion relative to these divergence measures are developed for parametric inference. Our interest is in the problem to testing for choosing between two models using some informational type statistics, when independent sample are drawn from a discrete population. Here, we discuss the asymptotic properties and the performance of new procedure tests and investigate their small sample behavior.
推荐文章
Ore prospecting model and targets for the Dashuigou tellurium deposit, Sichuan Province, China
1/50,000 steam sediment survey
Ore prospecting model and targets
Dashuigou Te deposit
Sichuan Province
谱归一化Wasserstein distance迁移网络
Wasserstein distance
迁移学习
Lipschitz约束
谱归一化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Minimum Penalized Hellinger Distance for Model Selection in Small Samples
来源期刊 统计学期刊(英文) 学科 医学
关键词 GENERALIZED INFORMATION ESTIMATION HYPOTHESIS Test MONTE Carlo SIMULATION
年,卷(期) 2012,(4) 所属期刊栏目
研究方向 页码范围 369-382
页数 14页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
GENERALIZED
INFORMATION
ESTIMATION
HYPOTHESIS
Test
MONTE
Carlo
SIMULATION
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
统计学期刊(英文)
半月刊
2161-718X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
584
总下载数(次)
0
总被引数(次)
0
论文1v1指导