作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Nanotechnology is defined as the study and application of 1 - 100 nm sized structures. Nanomaterials have opened avenues for the industries and scientific endeavors. These recognized for unique size, dependant physical and chemical properties (optical, magnetic, catalytic, thermodynamic, electrochemical) [1]. Most significant properties of nanoparticles is their carbon strength. It is said to be so tough that recently with a nano-sized particles i.e. carbon nanotube—a bullet proof T-shirt/vests was manufactured. Nanotechnology were firstly proposed/initiated by Nobel Prize winner Richard Feynman in 1959 [2]. This science is credited to have applications ranging from electronics, biomedicals, food, fuel cells to biosensors and even fabrics. Though every field of science progressing but still faces some lacunae and that result in development of a new technology. The thriving biomedical techniques for disorders like cancers etc. is still in developmental stage where researchers and doctors are working hard for concrete therapeutic results from such nano-techniques. On Cancers, the harmful side effects of its treatment like chemotherapy can’t be left aside which is result of one of its drug delivery methods that don’t pinpoint their intended target cells accurately rather affects whole area. Researchers in universities like Harvard and MIT have been able to attach special RNA strands, measuring about 10nm in diameter, to nanoparticles and fill the nanoparticles with a chemotherapy drug. The RNA strands get attracted to cancer cells. When the nanoparticle encounters a cancer cell it adheres to it and releases the drug into the cancer cell. This directed method of drug delivery has great potential for treating cancer patients while producing less side harmful effects than those produced by conventional chemotherapy [3]. This paper provides valuable information to the researchers, knowledge experts and policy makers regarding the application of nanotechnology and its values in science and technology. Biomedical is
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Nanostructures: Enhancing Potential Applications in Biomedicals
来源期刊 生物材料与纳米技术(英文) 学科 医学
关键词 BIONANOTECHNOLOGY Nanoparticles Medical THERAPEUTICS CANCERS Target Drug System Nanoburrs Quantum DOTS
年,卷(期) 2013,(1) 所属期刊栏目
研究方向 页码范围 12-16
页数 5页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
BIONANOTECHNOLOGY
Nanoparticles
Medical
THERAPEUTICS
CANCERS
Target
Drug
System
Nanoburrs
Quantum
DOTS
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
生物材料与纳米技术(英文)
季刊
2158-7027
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
328
总下载数(次)
0
总被引数(次)
0
论文1v1指导