基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Support Vector-based learning methods are an important part of Computational Intelligence techniques. Recent efforts have been dealing with the problem of learning from very large datasets. This paper reviews the most commonly used formulations of support vector machines for regression (SVRs) aiming to emphasize its usability on large-scale applications. We review the general concept of support vector machines (SVMs), address the state-of-the-art on training methods SVMs, and explain the fundamental principle of SVRs. The most common learning methods for SVRs are introduced and linear programming-based SVR formulations are explained emphasizing its suitability for large-scale learning. Finally, this paper also discusses some open problems and current trends.
推荐文章
A review of geoanalytical databases
Database
Geochemistry
Geology
Geoanalysis
Information system
Diffusion in garnet: a review
High temperature and high pressure
Diffusion
Garnet
Point defects
Vector模式软硬件协同仿真验证方法研究
软硬件协同仿真
Vector模式
开放式分层结构
Distribution and partitioning of heavy metals in large anthropogenically impacted river, the Pearl R
Pearl River
Water and sediment
Heavy metals
Partitioning
Distribution
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Support Vector Machines for Regression: A Succinct Review of Large-Scale and Linear Programming Formulations
来源期刊 智能科学国际期刊(英文) 学科 工学
关键词 SUPPORT VECTOR MACHINES SUPPORT VECTOR Regression Linear PROGRAMMING SUPPORT VECTOR Regression
年,卷(期) 2013,(1) 所属期刊栏目
研究方向 页码范围 5-14
页数 10页 分类号 TP39
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
SUPPORT
VECTOR
MACHINES
SUPPORT
VECTOR
Regression
Linear
PROGRAMMING
SUPPORT
VECTOR
Regression
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能科学国际期刊(英文)
季刊
2163-0283
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
102
总下载数(次)
0
总被引数(次)
0
论文1v1指导