基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
This hybrid methodology for structural health monitoring (SHM) is based on immune algorithms (IAs) and symbolic time series analysis (STSA). Real-valued negative selection (RNS) is used to detect damage detection and adaptive immune clonal selection algorithm (AICSA) is used to localize and quantify the damage. Data symbolization by using STSA alleviates the effects of harmful noise in raw acceleration data. This paper explains the mathematical basis of STSA and the procedure of the hybrid methodology. It also describes the results of an simulation experiment on a five-story shear frame structure that indicated the hybrid strategy can efficiently and precisely detect, localize and quantify damage to civil engineering structures in the presence of measurement noise.
推荐文章
Timing and structural controls on skarn-type and vein-type mineralization at the Xitian tin-polymeta
LA-MC-ICP-MS U-Pb dating
Structure control
Tin-polymetallic deposit
SE China
Application analysis of novel purple sweet corn inbred line development for hybrid nutrient-rich fru
紫甜玉米
自交系
Smith-Hazel指数
一般配合力(GCA)
Line×Tester模型
Forest carbon storage in Guizhou Province based on field measurement dataset
Forest carbon storage
Field measurement dataset
Karst landform
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Hybrid Methodology for Structural Health Monitoring Based on Immune Algorithms and Symbolic Time Series Analysis
来源期刊 智能学习系统与应用(英文) 学科 数学
关键词 Structural Health Monitoring Adaptive IMMUNE CLONAL SELECTION Algorithm SYMBOLIC Time Series Analysis Real-Valued Negative SELECTION Building Structures
年,卷(期) 2013,(1) 所属期刊栏目
研究方向 页码范围 48-56
页数 9页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Structural
Health
Monitoring
Adaptive
IMMUNE
CLONAL
SELECTION
Algorithm
SYMBOLIC
Time
Series
Analysis
Real-Valued
Negative
SELECTION
Building
Structures
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能学习系统与应用(英文)
季刊
2150-8402
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
166
总下载数(次)
0
总被引数(次)
0
论文1v1指导