作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
This article introduces a resampling procedure called the truncated geometric bootstrap method for stationary time series process. This procedure is based on resampling blocks of random length, where the length of each blocks has a truncated geometric distribution and capable of determining the probability p and number of block b. Special attention is given to problems with dependent data, and application with real data was carried out. Autoregressive model was fitted and the choice of order determined by Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). The normality test was carried out on the residual variance of the fitted model using Jargue-Bera statistics, and the best model was determined based on root mean square error of the forecasting values. The bootstrap method gives a better and a reliable model for predictive purposes. All the models for the different block sizes are good. They preserve and maintain stationary data structure of the process and are reliable for predictive purposes, confirming the efficiency of the proposed method.
推荐文章
Bootstrap方法在区间估计中的应用
Bootstrap
区间估计
总体均值
An experimental study on dynamic coupling process of alkaline feldspar dissolution and secondary min
Alkaline feldspar
Dissolution rate
Precipitation
Mineral conversion
Secondary porosity
Application ontology构建及SPARQL查询研究
本体
手机应用
简单协议和RDF查询语言
查询
本体描述语言
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 On the Application of Bootstrap Method to Stationary Time Series Process
来源期刊 美国计算数学期刊(英文) 学科 数学
关键词 TRUNCATED Geometric Bootstrap Method AUTOREGRESSIVE Model Akaike INFORMATION CRITERION (AIC) Bayesian INFORMATION CRITERION (BIC) Root Mean Square Error ()
年,卷(期) mgjssxqkyw_2013,(1) 所属期刊栏目
研究方向 页码范围 61-65
页数 5页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
TRUNCATED
Geometric
Bootstrap
Method
AUTOREGRESSIVE
Model
Akaike
INFORMATION
CRITERION
(AIC)
Bayesian
INFORMATION
CRITERION
(BIC)
Root
Mean
Square
Error
()
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
美国计算数学期刊(英文)
季刊
2161-1203
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
355
总下载数(次)
1
论文1v1指导