Mathematical relations are developed to compute optimum inclination angle of booster mirror for horizontally placed cooker (λ) and for optimally inclined cooker (ψ) during all months (selected day) of the year at 30°N latitude for maximizing the reflected component of solar intensity onto the absorber plate of the cooker. A solar radiation model is also developed and used to compute the ratio of various solar intensities on horizontal, inclined and normal surface of the absorber plate for all months at 30°N latitude. These ratios give a clear indication of greater solar radiation availability on the optimally inclined cooker as compared to the horizontally placed cooker for faster cooking especially during winter months when solar radiation capture is small. Experimental validations have also been performed to access the accuracy of the developed relations and model.