基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
By eliminating the need for externally applied coolant, internally cooled turning tools offer potential health, safety and cost benefits in many types of machining operation. As coolant flow is completely controlled, tool temperature measurement becomes a practical proposition and can be used to find and maintain the optimum machining conditions. This also requires an intelligent control system in the sense that it must be adaptable to different tool designs, work piece materials and machining conditions. In this paper, artificial neural networks (ANN) are assessed for their suitability to perform such a control function. Experimental data for both conventional tools used for dry machining and internally cooled tools is obtained and used to optimise the design of an ANN. A key finding is that both experimental scatter characteristic of turning and the range of machining conditions for which ANN control is required have a large effect on the optimum ANN design and the amount of data needed for its training. In this investigation, predictions of tool temperature with an optimised ANN were found to be within 5°C of measured values for operating temperatures of up to 258°C. It is therefore concluded that ANN’s are a viable option for in-process control of turning processes using internally controlled tools.
推荐文章
基于recurrent neural networks的网约车供需预测方法
长短时记忆循环神经网络
网约车数据
交通优化调度
TensorFlow
深度学习
Thermodynamic properties of San Carlos olivine at high temperature and high pressure
San Carlos olivine
Thermodynamic property
Thermal expansion
Heat capacity
Temperature gradient
基于CPN Tools的抑制弧改进方法研究
Petri
有色Petri网工具
抑制弧
列表
令牌
基于Arc Hydro Tools对辽河流域的自动提取
DEM
河网提取
Arc Hydro Tools
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Artificial Neural Networks for Controlling the Temperature of Internally Cooled Turning Tools
来源期刊 现代机械工程(英文) 学科 医学
关键词 CONTROL Systems In-Process CONTROL Artificial NEURAL Network MACHINE TOOLS
年,卷(期) 2013,(2) 所属期刊栏目
研究方向 页码范围 1-10
页数 10页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
CONTROL
Systems
In-Process
CONTROL
Artificial
NEURAL
Network
MACHINE
TOOLS
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代机械工程(英文)
季刊
2164-0165
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
141
总下载数(次)
0
总被引数(次)
0
论文1v1指导