In most lubrication systems, the oil is mixed with air, in contact with air, in contact with metals and at high temperature. This is mean cause of premature lubricant, deterioration which can result in oxidation products, which are mainly acid. Hydrocarbon oxidation in the liquid phase proceeds by a radical chain reaction. In the present paper polyalkylphenol formaldehyde sulphonate and its ethoxylate were synthesized and evaluated as pour point depressant, viscosity improver and antioxidant. The efficiency of these additives depends on their chemical structure and degree of mixing (mole fraction). Values of surface tension of these additives were measured in oil phase and consequently CMC was determined for all additives and their mixtures. A novel method of inhibiting oxidation was proposed. The author suggests the mechanism of inhibiting oxidation according to surface activity of additive in oil phase. More confirmations for suggested mechanism were investigated by measuring the area occupied per molecule of additive at oil phase. The results indicate that the compatibility of sulphonate with ethoxylate group and forming stable micelle which acts as wax dispersant and improver viscosity.