基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
对不同种类噪声的分类处理,可以提高噪声环境下语音信号处理的性能.为了能够准确地区分各类噪声,提出了一种基于Bark域噪声能量分布特性的噪声分类方法.通过将噪声能量从均匀时频空间映射到Bark空间,构造了一个能够有效区分各种噪声的22维特征向量,并使用支持向量机(SVM)进行模型训练和噪声分类.实验结果表明:所提出的噪声分类方法具有非常高的分类准确率,对用于实验的两种噪声数据集的平均分类准确率分别为99.50%和93.44%.
推荐文章
基于Bark域的电子耳蜗频带划分分析和拟合研究
电子耳蜗
曲线拟合
频带划分
滤波器组
一种基于图像特征的图像分类方法
图像特征
图像分类
颜色
纹理
边缘特征
一种基于颜色特征和能量分布的定位算法
区域定位
颜色特征
能量分布
模块
一种基于压缩感知理论的纹理分类方法
稀疏表示
压缩感知
词袋模型
纹理分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于Bark域能量分布的噪声分类方法
来源期刊 华东理工大学学报(自然科学版) 学科 工学
关键词 噪声分类 支持向量机 Bark域 能量分布特性
年,卷(期) 2013,(4) 所属期刊栏目 研究论文
研究方向 页码范围 472-476
页数 5页 分类号 TN912.3
字数 3548字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 林家骏 华东理工大学信息科学与工程学院 171 1083 15.0 26.0
2 袁文浩 华东理工大学信息科学与工程学院 9 38 5.0 6.0
3 王雨 华东理工大学信息科学与工程学院 8 38 5.0 6.0
4 陈宁 华东理工大学信息科学与工程学院 20 76 6.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (32)
参考文献  (9)
节点文献
引证文献  (9)
同被引文献  (17)
二级引证文献  (12)
1979(2)
  • 参考文献(0)
  • 二级参考文献(2)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(4)
  • 参考文献(2)
  • 二级参考文献(2)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(3)
  • 引证文献(3)
  • 二级引证文献(0)
2017(3)
  • 引证文献(1)
  • 二级引证文献(2)
2018(5)
  • 引证文献(0)
  • 二级引证文献(5)
2019(5)
  • 引证文献(2)
  • 二级引证文献(3)
2020(4)
  • 引证文献(2)
  • 二级引证文献(2)
研究主题发展历程
节点文献
噪声分类
支持向量机
Bark域
能量分布特性
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
华东理工大学学报(自然科学版)
双月刊
1006-3080
31-1691/TQ
16开
上海市梅陇路130号
4-382
1957
chi
出版文献量(篇)
3399
总下载数(次)
2
总被引数(次)
27146
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导