基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Although hierarchical correlated data are increasingly available and are being used in evidence-based medical practices and health policy decision making, there is a lack of information about the strengths and weaknesses of the methods of analysis with such data. In this paper, we describe the use of hierarchical data in a family study of alcohol abuse conducted in Edmonton, Canada, that attempted to determine whether alcohol abuse in probands is associated with abuse in their first-degree relatives. We review three methods of analyzing discrete hierarchical data to account for correlations among the relatives. We conclude that the best analytic choice for typical correlated discrete hierarchical data is by nonlinear mixed effects modeling using a likelihood-based approach or multilevel (hierarchical) modeling using a quasilikelihood approach, especially when dealing with heterogeneous patient data.
推荐文章
Statistics matters in interpretations of non-traditional stable isotopic data
Isotopic data processing
Error propagation
Significant digits
Difference between means with uncertainties
基于语义的Data Cube数字水印技术
数字水印
语义
数据立方体
版权
Data Transfer Object模式探讨
Data Transfer Object 三层应用 DataSet
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Comparison of Statistical Methods for Analyzing Discrete Hierarchical Data: A Case Study of Family Data on Alcohol Abuse
来源期刊 统计学期刊(英文) 学科 医学
关键词 NON-LINEAR Mixed Effects MODEL MULTILEVEL MODEL Generalized ESTIMATING Equations Mantel-Haenszel Odds Ratio SPECIFICITY Sensitivity
年,卷(期) 2013,(4) 所属期刊栏目
研究方向 页码范围 1-6
页数 6页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
NON-LINEAR
Mixed
Effects
MODEL
MULTILEVEL
MODEL
Generalized
ESTIMATING
Equations
Mantel-Haenszel
Odds
Ratio
SPECIFICITY
Sensitivity
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
统计学期刊(英文)
半月刊
2161-718X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
584
总下载数(次)
0
总被引数(次)
0
论文1v1指导