基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The huge amount of electrical power of many countries is consumed in lighting the streets. However, vehicles pass with very low rate in specific periods of time and parts of the streets are not occupied by vehicles over time. In this paper, we propose a system that automatically switches off the light for the parts of the streets having no vehicles and turns on the light for these parts once there are some vehicles that are going to come. Logically, this system may save a large amount of the electrical power. In addition, it may increase the lifetime of the lamps and reduce the pollutions. This system automatically controls and monitors the light of the streets. It can light only the parts that have vehicles and help on the maintenance of the lighting equipments. Vehicular Ad-Hoc Networks (VANET) make it possible to propose such system. VANET enables the possibility to know the presence of vehicles, their locations, their directions and their speeds in real time. These quantities are what are needed to develop this system. An advantage of using VANET is that there is no need to use specific network and equipments to design the system, but VANET infrastructure will be used. This decreases the cost and speed up the deployment of such system. This paper focuses on the proposal of different possible architectures of this system. Results show that the saved energy may reach up to 65% and an increase of the lifetime of the lamps of 53%.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Smart Street Lighting Control and Monitoring System for Electrical Power Saving by Using VANET
来源期刊 通讯、网络与系统学国际期刊(英文) 学科 医学
关键词 Vehicular AD-HOC Networks STREET LIGHTING SYSTEM Power SAVING SYSTEM Control Monitoring
年,卷(期) 2013,(8) 所属期刊栏目
研究方向 页码范围 351-360
页数 10页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Vehicular
AD-HOC
Networks
STREET
LIGHTING
SYSTEM
Power
SAVING
SYSTEM
Control
Monitoring
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
通讯、网络与系统学国际期刊(英文)
月刊
1913-3715
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
763
总下载数(次)
1
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导