作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着风电装机规模的不断扩大,对电网安全稳定经济运行的影响日益显现,因此风电的功率预测越来越重要.利用实际风电场风速数据,将广义回归神经网络(GRNN)建模理论及方法与数值天气预报(NWP)相结合,同时采用4h滚动预测方法,建立了基于GRNN的NWP超短期预测模型,并将此模型应用到实际风电场风功率预测系统中.
推荐文章
基于NWP和深度学习神经网络短期风功率预测
风功率预测
深度学习神经网络
数值天气预报
建立转换模型
概率密度
案例分析
基于风速融合和NARX神经网络的短期风电功率预测
短期风电功率预测
预测模型
NARX神经网络
风速融合
数据融合
数据处理
一种改进组合神经网络的超短期风速预测方法研究
风力发电
超短期风速预测
BP神经网络
长短期记忆(LSTM)神经网络
差分进化(DE)算法
基于动态集成LSSVR的超短期风电功率预测
超短期风电功率预测
最小二乘支持向量回归
动态集成
动态时间弯曲距离
数值天气预报
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于广义回归神经网络的NWP风功率超短期预测方法的研究
来源期刊 电气制造 学科
关键词 风功率超短期预测 广义回归神经网络(GRNN) 数值天气预报(NWP)
年,卷(期) 2013,(12) 所属期刊栏目 特别报道
研究方向 页码范围 26-29
页数 4页 分类号
字数 2879字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王清凉 福建省电力有限公司调度控制中心 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (4)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
风功率超短期预测
广义回归神经网络(GRNN)
数值天气预报(NWP)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电气工程学报
季刊
2095-9524
10-1289/TM
16开
北京市
2006
chi
出版文献量(篇)
2845
总下载数(次)
7
论文1v1指导