基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了更好地研究风功率预测,风速预测显得至关重要.国内神经网络文献均只表现出了短期风速预测,而对于超短期风速预测的神经网络数学模型却相对稀少.引入了GRNN神经网络,详细说明了该方法的超短期风速预测原理并建立了数学模型;为了使超短期风速预测精度有一个良好的对比性分析,将影响风电输出功率的各NWP(numerical weather prediection)信息(包括风速、风向、气温、气压)进行组合,以国内某风电场2014年5月份的各NWP数据进行算例分析,实验结果表明,GRNN全信息神经网络可以达到很好的预测精度,而且运算网络的稳定性甚优.
推荐文章
一种改进组合神经网络的超短期风速预测方法研究
风力发电
超短期风速预测
BP神经网络
长短期记忆(LSTM)神经网络
差分进化(DE)算法
残差调整灰色BP神经网络的短期风速预测研究
灰色预测
BP神经网络
风速预测
基于风速融合和NARX神经网络的短期风电功率预测
短期风电功率预测
预测模型
NARX神经网络
风速融合
数据融合
数据处理
基于PSO-WNN模型的超短期风速预测及其误差校正
二阶振荡粒子群优化算法
小波神经网络
一阶线性回归
误差校正
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于GRNN全信息神经网络的超短期风速预测研究
来源期刊 测控技术 学科 工学
关键词 GRNN 非线性 风速预测 超短期 RBF
年,卷(期) 2016,(4) 所属期刊栏目 理论与实践
研究方向 页码范围 149-152
页数 4页 分类号 TM743
字数 2322字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 高阳 沈阳工程学院电力学院 100 699 11.0 25.0
2 许傲然 沈阳工程学院电力学院 75 169 7.0 10.0
3 钟宏宇 沈阳工程学院电力学院 10 77 6.0 8.0
7 葛延峰 国网辽宁省电力有限公司调控中心 26 219 8.0 14.0
8 董存 国家电网公司调控中心 6 404 3.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (44)
共引文献  (115)
参考文献  (8)
节点文献
引证文献  (6)
同被引文献  (60)
二级引证文献  (6)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(7)
  • 参考文献(0)
  • 二级参考文献(7)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(7)
  • 参考文献(3)
  • 二级参考文献(4)
2012(5)
  • 参考文献(2)
  • 二级参考文献(3)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(7)
  • 引证文献(5)
  • 二级引证文献(2)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
GRNN
非线性
风速预测
超短期
RBF
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测控技术
月刊
1000-8829
11-1764/TB
大16开
北京2351信箱《测控技术》杂志社
82-533
1980
chi
出版文献量(篇)
8430
总下载数(次)
24
总被引数(次)
55628
论文1v1指导