In this paper, we present an equationing method based on non-classical logics applied to resolution of problems which involves phenomena of physical science. A non-classical logic denominated of the Paraquantum Logic (PQL), which is based on the fundamental concepts of the Paraconsistent Annotated logic with annotation of two values (PAL2v), is used. The formalizations of the PQL concepts, which are represented by a lattice with four vertices, lead us to consider Paraquantum logical states ψ which are propagated by means of variations of the evidence Degrees extracted from measurements performed on the Observable Variables of the physical world. The studies on the lattice of PQL give us equations that quantify values of physical largenesses from where we obtain the effects of the propagation of the Paraquantum logical states ψ. The PQL lattice with such features can be extensively studied and we obtain a Paraquantum Logical Model with the capacity of contraction or expansion which can represent any physical universe. In this paper the Paraquantum Logical Model is applied to the Newton Laws where we obtain equations and verify the action of an expansion factor the PQL lattice called Paraquantum Gamma Factor γPψ and its correlation with another important factor called Paraquantum Factor of quantization hψ. We present numerical examples applied to real physical systems through the equations which deal with paraquantum physical largenesses and how these values are transmitted to the physical world. With the results of these studies we can verify that the Paraquantum Logical Model has the property of interconnect several fields of the Physical Science.