基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Linear Least Square (LLS) is an approach for modeling regression analysis, applied for prediction and quantification of the strength of relationship between dependent and independent variables. There are a number of methods for solving the LLS problem but as soon as the data size increases and system becomes ill conditioned, the classical methods become complex at time and space with decreasing level of accuracy. Proposed work is based on prediction and quantification of the strength of relationship between sugar fasting and Post-Prandial (PP) sugar with 73 factors that affect diabetes. Due to the large number of independent variables, presented problem of diabetes prediction also presented similar complexities. ABS method is an approach proven better than other classical approaches for LLS problems. ABS algorithm has been applied for solving LLS problem. Hence, separate regression equations were obtained for sugar fasting and PP severity.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 An Application of the ABS Algorithm for Modeling Multiple Regression on Massive Data, Predicting the Most Influencing Factors
来源期刊 应用数学(英文) 学科 医学
关键词 ABS ALGORITHM Linear Least SQUARE Regression DIABETES HUANG ALGORITHM
年,卷(期) 2013,(6) 所属期刊栏目
研究方向 页码范围 907-913
页数 7页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
ABS
ALGORITHM
Linear
Least
SQUARE
Regression
DIABETES
HUANG
ALGORITHM
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
应用数学(英文)
月刊
2152-7385
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
1878
总下载数(次)
0
总被引数(次)
0
论文1v1指导