基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
深入分析了线损率的影响因素,对现存的线损率预测方法进行了研究,采用粒子群算法对支持向量机进行参数寻优,建立基于粒子群优化的支持向量机预测模型对理论线损率进行预测仿真,为线损的降低和电能的高效利用提供保障;最后通过实例验证了该模型在理论线损率预测中的精度.
推荐文章
一种基于累加PSO-SVM的网络安全态势预测模型
网络安全
态势预测
累加预处理
支持向量机
粒子群算法
基于PSO-SVM的发动机故障诊断研究
粒子群优化算法
支持向量机
发动机
故障诊断
基于PSO-SVM模型的拱坝坝变形预测研究
拱坝
变形预测
粒子群优化算法
支持向量机
基于PSO-SVM的煤与瓦斯突出强度预测模型
煤与瓦斯突出
预测
粒子群优化支持向量机(PSO-SVM)
BP神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于PSO-SVM模型的理论线损率预测研究
来源期刊 重庆工商大学学报(自然科学版) 学科 工学
关键词 线损率预测 支持向量机 粒子群优化
年,卷(期) 2013,(8) 所属期刊栏目 信息科学
研究方向 页码范围 55-58,66
页数 5页 分类号 TM711
字数 2761字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 田丽 安徽工程大学电气工程学院 105 450 10.0 14.0
2 王静 巢湖学院电子工程与电气自动化学院 11 10 3.0 3.0
3 夏坤 安徽电力巢湖无为供电有限责任公司新闻中心 1 4 1.0 1.0
4 胡智颖 2 12 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (20)
共引文献  (41)
参考文献  (6)
节点文献
引证文献  (4)
同被引文献  (21)
二级引证文献  (10)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(4)
  • 引证文献(1)
  • 二级引证文献(3)
2018(2)
  • 引证文献(0)
  • 二级引证文献(2)
2019(3)
  • 引证文献(1)
  • 二级引证文献(2)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
线损率预测
支持向量机
粒子群优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
重庆工商大学学报(自然科学版)
双月刊
1672-058X
50-1155/N
16开
重庆市南岸区学府大道21号
1983
chi
出版文献量(篇)
3397
总下载数(次)
6
总被引数(次)
14776
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
安徽省自然科学基金
英文译名:Anhui Provincial Natural Science Foundation
官方网址:http://www.ahinfo.gov.cn/zrkxjj/index.htm
项目类型:安徽省优秀青年科技基金
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导