基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Formal health impact assessment (HIA), currently underused in the United States, is a relatively new process for assisting decision-makers in non-health sectors by estimating the expected public health impacts of policy and planning decisions. In this paper we quantify the expected air quality impacts of increased traffic due to a proposed new university campus extension in Chapel Hill, North Carolina. In so doing, we build the evidence base for quantitative HIA in the United States and develop an improved approach for forecasting traffic effects on exposure to ambient fine particulate matter (PM2.5) in air. Very few previous US HIAs have quantified health impacts and instead have relied on stakeholder intuition to decide whether effects will be positive, negative, or neutral. Our method uses an air dispersion model known as CAL3QHCR to predict changes in exposure to airborne, traffic-related PM2.5 that could occur due to the proposed new campus development. We employ CAL3QHCR in a new way to better represent variability in road grade, vehicle driving patterns (speed, acceleration, deceleration, and idling), and meteorology. In a comparison of model predictions to measured PM2.5 concentrations, we found that the model estimated PM2.5 dispersion to within a factor of two for 75% of data points, which is within the typical benchmark used for model performance evaluation. Applying the model to present-day conditions in the study area, we found that current traffic contributes a relatively small amount to ambient PM2.5 concentrations: about 0.14 μg/m3 in the most exposed neighborhood—relatively low in comparison to the current US National Ambient Air Quality Standard of 12 μg/m3. Notably, even though the new campus is expected to bring an additional 40,000 daily trips to the study community by the year 2025, vehicle-related PM2.5 emissions are expected to decrease compared to current conditions due to anticipated improvements in vehicle technologies and cleaner fuels.
推荐文章
Determination of brominated diphenyl ethers in atmospheric particulate matter using selective pressu
Brominated diphenyl ethers
Atmospheric particulate matters
Selective pressurised liquid extraction
Gas chromatography-mass spectrometry
Source and composition of sedimentary organic matter in the head of Three Gorges Reservoir: a multip
Three Gorges reservior
Sedimentary organic matter
δ13C
Lignin phenols
Lipid biomarkers
Diagenetic evolution of clastic reservoirs and its records in fine subsection: significance and appl
Tight sandstone reservoirs
Diagenetic evolution
Fine subsection
Significance
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Traffic Impacts on Fine Particulate Matter Air Pollution at the Urban Project Scale: A Quantitative Assessment
来源期刊 环境保护(英文) 学科 医学
关键词 PM2.5 TRAFFIC HEALTH IMPACT ASSESSMENT
年,卷(期) 2013,(12) 所属期刊栏目
研究方向 页码范围 49-62
页数 14页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
PM2.5
TRAFFIC
HEALTH
IMPACT
ASSESSMENT
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
环境保护(英文)
月刊
2152-2197
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
956
总下载数(次)
0
总被引数(次)
0
论文1v1指导