基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
短期负荷预测的精度直接影响电力系统运行的可靠性和供电质量。提出一种基于粒子群优化算法的最小二乘支持向量机短期负荷预测的模型和算法,对最小二乘支持向量机的参数寻优,再以测试集误差作为判决依据,对模型参数的进行优化选择,从而提高预测精度,避免最小二乘支持向量机对经验的依赖以及预测过程中对模型参数的盲目选择。利用该模型对某电网进行负荷预测,证明该模型有较好的收敛性、较高的预测精度和较快的训练速度。
推荐文章
基于RBFNN混合粒子群算法的电力负荷短期预测
电力负荷预测
径向基神经网络(RBFNN)
混合粒子群优化算法(HPSO)
基于动态双组粒子群的短期负荷预测
短期负荷预测
动态双组
全局搜索
局部搜索
支持向量机
基于改进粒子群优化LSSVM的短期电力负荷预测
粒子群算法
电力负荷预测
自适应变异
最小二乘支持向量机
基于粒子群的电力系统短期负荷预测
PSO
BP神经网络
适应度
迭代
模糊推理
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于粒子群算法LSSVM短期负荷预测模型研究
来源期刊 电气工程 学科 工学
关键词 短期负荷预测 粒子群优化算法 最小二乘机支持向量机 参数选取
年,卷(期) 2014,(1) 所属期刊栏目
研究方向 页码范围 1-7
页数 7页 分类号 TP1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(4)
  • 参考文献(4)
  • 二级参考文献(0)
2005(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
短期负荷预测
粒子群优化算法
最小二乘机支持向量机
参数选取
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电气工程
季刊
2333-5394
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
215
总下载数(次)
263
总被引数(次)
0
论文1v1指导