作者:
原文服务方: 工业仪表与自动化装置       
摘要:
针对城市居民人均年用电量序列具有波动性、随机性和相依性的特点,建立了基于粒子群优化算法的自回归加权马尔可夫链的负荷预测模型( PSO-AR-W-MC)。首先利用粒子群算法和AIC准则确定出自回归AR模型的系数和阶数,并对负荷变化趋势进行预测。利用平行曲线法划分该模型得到的残差序列,建立马尔可夫链的状态区间,以此求出状态转移概率矩阵,利用归一化后的自相关系数对其进行改进,确定出预测数据所属状态区间。根据状态区间对预测值进行第二次拟合。实例分析表明该算法具有较高的精确度和可靠性,应用前景广阔。
推荐文章
基于支持向量机-马尔可夫链的位移时序预测
支持向量机
马尔可夫链
位移时间序列
粒子群优化
基于量子粒子群优化和隐马尔可夫模型的多序列比对算法
多序列比对
隐马尔可夫模型
量子粒子群优化
SPS
CS
基于灰色马尔可夫链的核设备退化趋势预测
核设备
灰色马尔可夫链
退化趋势
预测
基于RBFNN混合粒子群算法的电力负荷短期预测
电力负荷预测
径向基神经网络(RBFNN)
混合粒子群优化算法(HPSO)
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于粒子群算法的自回归加权马尔可夫链的负荷预测
来源期刊 工业仪表与自动化装置 学科
关键词 PSO算法 自回归模型 加权马尔可夫链 预测
年,卷(期) 2014,(1) 所属期刊栏目 信息与动态
研究方向 页码范围 113-117
页数 5页 分类号 O236
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王江荣 兰州石化职业技术学院信息处理与控制工程系 111 264 7.0 9.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (9)
共引文献  (51)
参考文献  (3)
节点文献
引证文献  (7)
同被引文献  (40)
二级引证文献  (26)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(7)
  • 参考文献(0)
  • 二级参考文献(7)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(4)
  • 引证文献(4)
  • 二级引证文献(0)
2016(4)
  • 引证文献(0)
  • 二级引证文献(4)
2017(7)
  • 引证文献(1)
  • 二级引证文献(6)
2018(10)
  • 引证文献(1)
  • 二级引证文献(9)
2019(5)
  • 引证文献(1)
  • 二级引证文献(4)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
PSO算法
自回归模型
加权马尔可夫链
预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
工业仪表与自动化装置
双月刊
1000-0682
61-1121/TH
大16开
1971-01-01
chi
出版文献量(篇)
3676
总下载数(次)
0
总被引数(次)
18688
论文1v1指导