基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In this paper, we focus on a type of inverse problem in which the data are expressed as an unknown function of the sought and unknown model function (or its discretised representation as a model parameter vector). In particular, we deal with situations in which training data are not available. Then we cannot model the unknown functional relationship between data and the unknown model function (or parameter vector) with a Gaussian Process of appropriate dimensionality. A Bayesian method based on state space modelling is advanced instead. Within this framework, the likelihood is expressed in terms of the probability density function (pdf) of the state space variable and the sought model parameter vector is embedded within the domain of this pdf. As the measurable vector lives only inside an identified sub-volume of the system state space, the pdf of the state space variable is projected onto the space of the measurables, and it is in terms of the projected state space density that the likelihood is written;the final form of the likelihood is achieved after convolution with the distribution of measurement errors. Application motivated vague priors are invoked and the posterior probability density of the model parameter vectors, given the data are computed. Inference is performed by taking posterior samples with adaptive MCMC. The method is illustrated on synthetic as well as real galactic data.
推荐文章
Estimation of soil organic carbon storage and its fractions in a small karst watershed
Bare rock rate
Estimation method
soil organic carbon storage
Small watershed
Karst
Iron isotopic analyses of geological reference materials on MCICP-MS with instrumental mass bias cor
Iron isotopic analyses
Sample-standard bracketing
Double spike
Ni doping
Reference materials
Precision and accuracy
Oil geochemistry derived from the Qinjiatun–Qikeshu oilfields: insight from light hydrocarbons
Light hydrocarbons
Crude oil
Lishu Fault Depression
Geochemistry characteristic
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Inverse Bayesian Estimation of Gravitational Mass Density in Galaxies from Missing Kinematic Data
来源期刊 美国计算数学期刊(英文) 学科 数学
关键词 Bayesian INVERSE Problems State Space Modelling MISSING DATA Dark Matter in GALAXIES Adaptive MCMC
年,卷(期) 2014,(1) 所属期刊栏目
研究方向 页码范围 6-29
页数 24页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Bayesian
INVERSE
Problems
State
Space
Modelling
MISSING
DATA
Dark
Matter
in
GALAXIES
Adaptive
MCMC
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
美国计算数学期刊(英文)
季刊
2161-1203
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
355
总下载数(次)
1
总被引数(次)
0
论文1v1指导