基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Networks are used to represent interactions in a wide variety of fields, like biology, sociology, chemistry, and more. They have a great deal of salient information contained in their structures, which have a variety of applications. One of the important topics of network analysis is finding influential nodes. These nodes are of two kinds —leader nodes and bridge nodes. In this study, we propose an algorithm to find strong leaders in a network based on a revision of neighborhood similarity. This leadership detection is combined with a neighborhood intersection clustering algorithm to produce high quality communities for various networks. We also delve into the structure of a new network, the Houghton College Twitter network, and examine the discovered leaders and their respective followers in more depth than which is frequently attempted for a network of its size. The results of the observations on this and other networks demonstrate that the community partitions found by this algorithm are very similar to those of ground truth communities.
推荐文章
Determination of brominated diphenyl ethers in atmospheric particulate matter using selective pressu
Brominated diphenyl ethers
Atmospheric particulate matters
Selective pressurised liquid extraction
Gas chromatography-mass spectrometry
Determination of Hf-Sr-Nd isotopic ratios by MC-ICP-MS using rapid acid digestion after flux-free fu
Certified reference material
Flux-free fusion
Hf-Sr-Nd isotopic ratio
Procedural blank
Rapid acid digestion
基于recurrent neural networks的网约车供需预测方法
长短时记忆循环神经网络
网约车数据
交通优化调度
TensorFlow
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Determining Leaders and Communities on Networks Using Neighborhood Similarity
来源期刊 社交网络(英文) 学科 数学
关键词 COMMUNITY Detection COMMUNITY LEADERS Node Importance CENTRALITY NEIGHBORHOOD SIMILARITY MODULARITY
年,卷(期) 2014,(1) 所属期刊栏目
研究方向 页码范围 50-57
页数 8页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
COMMUNITY
Detection
COMMUNITY
LEADERS
Node
Importance
CENTRALITY
NEIGHBORHOOD
SIMILARITY
MODULARITY
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
社交网络(英文)
季刊
2169-3285
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
112
总下载数(次)
0
总被引数(次)
0
期刊文献
相关文献
推荐文献
论文1v1指导