基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Texture recognition and classification is a widely applicable task in computer vision. A key stage in performing this task is feature extraction, which identifies sets of features that describe the visual texture of an image. Many descriptors can be used to perform texture classification;among the more common of these are the grey level co-occurrence matrix, Gabor wavelets, steerable pyramids and SIFT. We analyse and compare the effectiveness of these methods on the Brodatz, UIUCTex and KTH-TIPS texture image datasets. The efficacy of the descriptors is evaluated both in isolation and by combining several of them by means of machine learning approaches such as Bayesian networks, support vector machines, and nearest-neighbour approaches. We demonstrate that using a combination of features improves reliability over using a single feature type when multiple datasets are to be classified. We determine optimal combinations for each dataset and achieve high classification rates, demonstrating that relatively simple descriptors can be made to perform close to the very best published results. We also demonstrate the importance of selecting the optimal descriptor set and analysis techniques for a given dataset.
推荐文章
基于Feature的WEB GIS空间信息共享方案的研究
GIS
WEB GIS
FEATURE
空间信息共享
基于Titan Image软件的QuickBird影像融合
Titan Image
QuickBird
影像融合
质量评价
Image J软件在象牙鉴定中的应用
象牙
物种鉴定
施氏角
Image J软件
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Combinations of Feature Descriptors for Texture Image Classification
来源期刊 数据分析和信息处理(英文) 学科 医学
关键词 IMAGE Processing TEXTURE Analysis COMPUTER VISION IMAGE CLASSIFICATION
年,卷(期) 2014,(3) 所属期刊栏目
研究方向 页码范围 67-76
页数 10页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
IMAGE
Processing
TEXTURE
Analysis
COMPUTER
VISION
IMAGE
CLASSIFICATION
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据分析和信息处理(英文)
季刊
2327-7211
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
106
总下载数(次)
0
论文1v1指导