基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Advances in genotyping technology, such as molecular markers, have noticeably improved our capacity to characterize genomes at multiple loci. Concomitantly, the methodological framework to analyze genetic data has expanded, and keeping abreast with the latest statistical developments to analyze molecular marker data in the context of spatial genetics has become a difficult task. Most methods in spatial statistics are devoted to univariate data whereas the nature of molecular marker data is highly dimensional. Multivariate methods are aimed at finding proximities between entities characterized by multiple variables by summarizing information in few synthetic variables. In particular, Principal Component analysis (PCA) has been used to study genetic structure of geo-referenced allele frequency profiles, incorporating spatial information with a posteriori analysis. Conversely, the recently developed spatially restricted PCA (sPCA) explicitly includes spatial data in the optimization criterion. In this work, we compared the results of the application of PCA and sPCA in the study of the spatial genetic structure at fine scale of a Prosopis flexuosa and P. chilensis hybrid swarm. Data consisted in the genetic characterization of 87 trees sampled in Córdoba, Argentina and genotyped at six microsatellites, which yielded 72 alleles. As expected, principal components explained more variance than sPCA components, but were less spatially autocorrelated. The maps obtained by the interpolation of sPC1 values allowed a better visualization of a patchy spatial pattern of genetic variability than the PC1 synthetic map. We also proposed a PC-sPC scatter plot of allele loadings to better understand the allele contributions to spatial genetic variability.
推荐文章
Spatial analysis of carbon storage density of mid-subtropical forests using geostatistics: a case st
Carbon storage density
Geostatistics
Mid-subtropical forests
Spatial autocorrelation
Spatial heterogeneity
Iron isotope fractionation during fenitization: a case study of carbonatite dykes from Bayan Obo, In
Iron isotopes
Fenitization
Fluid exsolution
Carbonatite
Bayan Obo
Incorporation of silica into the goethite structure: a microscopic and spectroscopic study
Quartz
Goethite
Twinned goethite
Microscopic characterization (FESEM and TEM)
FT-IR spectroscopy
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Assessing spatial genetic structure from molecular marker data via principal component analyses: A case study in a <i>Prosopis</i>sp. forest
来源期刊 生命科学与技术进展(英文) 学科 医学
关键词 Multivariate Analysis FORESTS Molecular Markers Spatial Genetics SPCA
年,卷(期) 2014,(2) 所属期刊栏目
研究方向 页码范围 89-99
页数 11页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Multivariate
Analysis
FORESTS
Molecular
Markers
Spatial
Genetics
SPCA
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
生命科学与技术进展(英文)
月刊
2156-8456
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
314
总下载数(次)
0
总被引数(次)
0
论文1v1指导