基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
不平衡数据分类是机器学习研究领域中的一个热点问题。针对传统分类算法处理不平衡数据的少数类识别率过低问题,文章提出了一种基于聚类的改进AdaBoost分类算法。算法首先进行基于聚类的欠采样,在多数类样本上进行K均值聚类,之后提取聚类质心,与少数类样本数目一致的聚类质心和所有少数类样本组成新的平衡训练集。为了避免少数类样本数量过少而使训练集过小导致分类精度下降,采用少数过采样技术过采样结合聚类欠采样。然后,借鉴代价敏感学习思想,对AdaBoost算法的基分类器分类误差函数进行改进,赋予不同类别样本非对称错分损失。实验结果表明,算法使模型训练样本具有较高的代表性,在保证总体分类性能的同时提高了少数类的分类精度。
推荐文章
一种改进的降噪自编码神经网络不平衡数据分类算法
神经网络
过采样
不平衡数据
分类
一种处理不平衡大数据的并行随机森林算法
不平衡大数据
MapReduce
随机森林
代价敏感
分层自助抽样
面向不平衡数据分类的KFDA-Boosting算法
核费希尔判别分析
集成学习
不平衡数据
分类
面向不平衡数据分类的复合SVM算法研究
不平衡数据
支持向量机
自适应合成采样
不同错误代价
修正算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于聚类提升的不平衡数据分类算法
来源期刊 集成技术 学科 工学
关键词 不平衡数据分类 K均值聚类 AdaBoost 集成学习
年,卷(期) 2014,(2) 所属期刊栏目
研究方向 页码范围 35-41
页数 7页 分类号 TP18
字数 4917字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 钟勇 佛山科学技术学院电子与信息工程学院 46 354 9.0 17.0
2 张润晶 佛山科学技术学院信息与教育技术中心 8 57 4.0 7.0
3 胡小生 佛山科学技术学院电子与信息工程学院 19 198 7.0 14.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (30)
共引文献  (105)
参考文献  (7)
节点文献
引证文献  (7)
同被引文献  (19)
二级引证文献  (30)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(6)
  • 参考文献(1)
  • 二级参考文献(5)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(3)
  • 参考文献(2)
  • 二级参考文献(1)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(7)
  • 引证文献(2)
  • 二级引证文献(5)
2019(19)
  • 引证文献(2)
  • 二级引证文献(17)
2020(9)
  • 引证文献(1)
  • 二级引证文献(8)
研究主题发展历程
节点文献
不平衡数据分类
K均值聚类
AdaBoost
集成学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
集成技术
双月刊
2095-3135
44-1691/T
大16开
深圳市南山区西丽深圳大学城学苑大道1068号
2012
chi
出版文献量(篇)
677
总下载数(次)
2
总被引数(次)
1808
论文1v1指导