基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Micro-blogging today has become a very popular communication tool among the Internet users. Real-time web services such as Twitter allow users to express their opinions and interests, often expressed in the form of short text messages. Many business companies are looking into utilizing these data streams in order to improve their marketing campaigns, refine advertising and better meet their customer needs. In this study, we focus on using Twitter, for the task of extraction product reputation trend. Thus, business could gauge the effectiveness of a recent marketing campaign by aggregating user opinions on Twitter regarding their product. In this paper, we introduce an approach for automatically classifying the sentiment of Twitter messages toward product/brand, using emoticons and by improving pre-processing steps in order to achieve high accuracy.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Product Reputation Trend Extraction from Twitter
来源期刊 社交网络(英文) 学科 经济
关键词 TWITTER REPUTATION ANALYSIS SENTIMENT ANALYSIS NATURAL LANGUAGE Processing
年,卷(期) 2014,(4) 所属期刊栏目
研究方向 页码范围 196-202
页数 7页 分类号 F4
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
TWITTER
REPUTATION
ANALYSIS
SENTIMENT
ANALYSIS
NATURAL
LANGUAGE
Processing
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
社交网络(英文)
季刊
2169-3285
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
112
总下载数(次)
0
论文1v1指导