The Rayleigh-Taylor instability in stratified plasma has been investigated in the presence of combined effect of horizontal and vertical magnetic field. The linear growth rate has been derived for the case where plasma with exponential density distribution is confined between two rigid planes by solving the linear MHD equations into normal mode. Some special cases have been particularized to explain the roles the variables of the problem play;numerical solutions have been made and some stability diagrams are plotted and discussed. The results show that, the growth rate depends on the horizontal and vertical components of magnetic field and also depends on the parameter λ*=λLD ?(λ is constant and LD is the density-scale length). The maximum instability happens at λ*=-0.5 and to get more stability model we select?λ* such that it is different than?λ*=-0.5. The vertical magnetic field component have a greater effect than the horizontal magnetic field component in the case of large wavelength, while in the case of short wavelength, the horizontal magnetic field components have greater effect than the vertical magnetic field component.