作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
It is difficult if not impossible to appropriately and effectively select from among the vast pool of existing neural network machine learning predictive models for industrial incorporation or academic research exploration and enhancement. When all models outperform all the others under disparate circumstances, none of the models do. Selecting the ideal model becomes a matter of ill-supported opinion ungrounded on the extant real world environment. This paper proposes a novel grouping of the model pool grounded along a non-stationary real world data line into two groups: Permanent Data Learning and Reversible Data Learning. This paper further proposes a novel approach towards qualitatively and quantitatively demonstrating their significant differences based on how they alternatively approach dynamic and raw real world data vs static and prescient data mining biased laboratory data. The results across 2040 separate simulation runs using 15,600 data points in realistically operationally controlled data environments show that the two-group division is effective and significant with clear qualitative, quantitative and theoretical support. Results across the empirical and theoretical spectrum are internally and externally consistent yet demonstrative of why and how this result is non-obvious.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Novel Operational Partition between Neural Network Classifiers on Vulnerability to Data Mining Bias
来源期刊 软件工程与应用(英文) 学科 医学
关键词 Machine LEARNING Neural Networks DATA Mining DATA DREDGING NON-STATIONARY Time Series Analysis Permanent DATA LEARNING REVERSIBLE DATA LEARNING
年,卷(期) 2014,(4) 所属期刊栏目
研究方向 页码范围 264-272
页数 9页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Machine
LEARNING
Neural
Networks
DATA
Mining
DATA
DREDGING
NON-STATIONARY
Time
Series
Analysis
Permanent
DATA
LEARNING
REVERSIBLE
DATA
LEARNING
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件工程与应用(英文)
月刊
1945-3116
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
885
总下载数(次)
0
总被引数(次)
0
论文1v1指导