基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Securities fraud is a common worldwide problem, resulting in serious negative consequences to securities market each year. Securities Regulatory Commission from various countries has also attached great importance to the detection and prevention of securities fraud activities. Securities fraud is also increasing due to the rapid expansion of securities market in China. In accomplishing the task of securities fraud detection, China Securities Regulatory Commission (CSRC) could be facilitated in their work by using a number of data mining techniques. In this paper, we investigate the usefulness of Logistic regression model, Neural Networks (NNs), Sequential minimal optimization (SMO), Radial Basis Function (RBF) networks, Bayesian networks and Grammar Based Genet- ic Programming (GBGP) in the classification of the real, large and latest China Corporate Securities Fraud (CCSF) database. The six data mining techniques are compared in terms of their performances. As a result, we found GBGP outperforms others. This paper describes the GBGP in detail in solving the CCSF problem. In addition, the Synthetic Minority Over-sampling Technique (SMOTE) is applied to generate synthetic minority class examples for the imbalanced CCSF dataset.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Origin and genetic family of Huhehu oil in the Hailar Basin, northeast China
Hailar Basin
Huhehu Sag
Biomarkers
Chemometrics
Oil–oil and oil–source rock correlations
Spatial analysis of carbon storage density of mid-subtropical forests using geostatistics: a case st
Carbon storage density
Geostatistics
Mid-subtropical forests
Spatial autocorrelation
Spatial heterogeneity
一种基于Knowledge的网络配置变更管理模型
网络管理
配置管理
Knowledge
组件
模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Knowledge Discovering in Corporate Securities Fraud by Using Grammar Based Genetic Programming
来源期刊 电脑和通信(英文) 学科 医学
关键词 KNOWLEDGE DISCOVERING Rule Induction Token Competition SMOTE CORPORATE Securities FRAUD Detection Grammar-Based Genetic Programming
年,卷(期) 2014,(4) 所属期刊栏目
研究方向 页码范围 148-156
页数 9页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
KNOWLEDGE
DISCOVERING
Rule
Induction
Token
Competition
SMOTE
CORPORATE
Securities
FRAUD
Detection
Grammar-Based
Genetic
Programming
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑和通信(英文)
月刊
2327-5219
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
783
总下载数(次)
0
总被引数(次)
0
论文1v1指导