基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
A major limitation of expression profiling is caused by the large number of variables assessed compared to relatively small sample sizes. In this study, we developed a multinomial Probit Bayesian model which utilizes the double exponential prior to induce shrinkage and reduce the number of covariates in the model [1]. A hierarchical Sparse Bayesian Generalized Linear Model (SBGLM) was developed in order to facilitate Gibbs sampling which takes into account the progressive nature of the response variable. The method was evaluated using a published dataset (GSE6099) which contained 99 prostate cancer cell types in four different progressive stages [2]. Initially, 398 genes were selected using ordinal logistic regression with a cutoff value of 0.05 after Benjamini and Hochberg FDR correction. The dataset was randomly divided into training (N = 50) and test (N = 49) groups such that each group contained equal number of each cancer subtype. In order to obtain more robust results we performed 50 re-samplings of the training and test groups. Using the top ten genes obtained from SBGLM, we were able to achieve an average classification accuracy of 85% and 80% in training and test groups, respectively. To functionally evaluate the model performance, we used a literature mining approach called Geneset Cohesion Analysis Tool [3]. Examination of the top 100 genes produced an average functional cohesion p-value of 0.007 compared to 0.047 and 0.131 produced by classical multi-category logistic regression and Random Forest approaches, respectively. In addition, 96 percent of the SBGLM runs resulted in a GCAT literature cohesion p-value smaller than 0.047. Taken together, these results suggest that sparse Bayesian Multinomial Probit model applied to cancer progression data allows for better subclass prediction and produces more functionally relevant gene sets.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Application of Sparse Bayesian Generalized Linear Model to Gene Expression Data for Classification of Prostate Cancer Subtypes
来源期刊 统计学期刊(英文) 学科 医学
关键词 LASSO ROBUSTNESS SPARSITY MCMC Gibbs Sampling
年,卷(期) 2014,(7) 所属期刊栏目
研究方向 页码范围 518-526
页数 9页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
LASSO
ROBUSTNESS
SPARSITY
MCMC
Gibbs
Sampling
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
统计学期刊(英文)
半月刊
2161-718X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
584
总下载数(次)
0
总被引数(次)
0
论文1v1指导