基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Guastello’s polynomial regression method for solving cusp catastrophe model has been widely applied to analyze nonlinear behavior outcomes. However, no statistical power analysis for this modeling approach has been reported probably due to the complex nature of the cusp catastrophe model. Since statistical power analysis is essential for research design, we propose a novel method in this paper to fill in the gap. The method is simulation-based and can be used to calculate statistical power and sample size when Guastello’s polynomial regression method is used to do cusp catastrophe modeling analysis. With this novel approach, a power curve is produced first to depict the relationship between statistical power and samples size under different model specifications. This power curve is then used to determine sample size required for specified statistical power. We verify the method first through four scenarios generated through Monte Carlo simulations, and followed by an application of the method with real published data in modeling early sexual initiation among young adolescents. Findings of our study suggest that this simulation-based power analysis method can be used to estimate sample size and statistical power for Guastello’s polynomial regression method in cusp catastrophe modeling.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Cusp Catastrophe Polynomial Model: Power and Sample Size Estimation
来源期刊 统计学期刊(英文) 学科 医学
关键词 CUSP CATASTROPHE Model POLYNOMIAL Regression Method STATISTICAL Power Analysis SAMPLE SIZE Determination
年,卷(期) 2014,(10) 所属期刊栏目
研究方向 页码范围 803-813
页数 11页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
CUSP
CATASTROPHE
Model
POLYNOMIAL
Regression
Method
STATISTICAL
Power
Analysis
SAMPLE
SIZE
Determination
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
统计学期刊(英文)
半月刊
2161-718X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
584
总下载数(次)
0
总被引数(次)
0
论文1v1指导