基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
隐树结构图模型通过引入了隐藏节点来描述变量之间的潜在关系,因而可以更好地对变量之间的相关性进行建模。树模型学习过程中,从变量观测数据所提取的有用特征数量,决定了该模型对变量间深层关系的建模能力;而现有学习算法都是对观测数据直接计算统计量来进行模型学习,未能按观测数据中的特征分类处理。针对现有算法对观测数据中信息利用不充分的不足,该文提出基于模糊多特征递归分组算法的隐树模型学习方法。首先,将变量的原始观测数据通过反映其特征的模糊隶属度函数转化成多个模糊特征,并构造多维模糊特征向量;其次,计算两两变量模糊特征向量之间的距离,并将其综合得到所有变量之间的模糊特征向量距离矩阵;最后,基于该距离矩阵,利用递归分组算法学习隐树模型。该文还将所提算法应用于股票收益数据和气温数据建模,验证了该文算法的实用性和有效性。
推荐文章
面向系统结构图的数字仿真
数学模型
结构图
仿真
基于结构图的ETL过程建模方法
数据仓库
抽取转换加载
结构图
模型
面向系统动态结构图的状态仿真
状态变量
动态结构图
数字仿真
基于结构图设计LDPC码及其性能仿真
正则LDPC码
校验矩阵
数据存储
计算机仿真
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于模糊多特征递归分组算法的隐树结构图模型学习
来源期刊 电子与信息学报 学科 工学
关键词 信息处理 图模型 隐树模型 信息距离 模糊多特征
年,卷(期) 2014,(6) 所属期刊栏目 论文
研究方向 页码范围 1312-1320
页数 9页 分类号 TP18
字数 6749字 语种 中文
DOI 10.3724/SP.J.1146.2013.00860
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 徐晓滨 杭州电子科技大学自动化学院 37 438 10.0 20.0
2 李宏伟 杭州电子科技大学自动化学院 2 2 1.0 1.0
3 成林 杭州电子科技大学自动化学院 4 9 1.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (89)
共引文献  (92)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1960(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(2)
  • 参考文献(1)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(4)
  • 参考文献(0)
  • 二级参考文献(4)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(5)
  • 参考文献(0)
  • 二级参考文献(5)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(9)
  • 参考文献(0)
  • 二级参考文献(9)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(7)
  • 参考文献(1)
  • 二级参考文献(6)
2006(8)
  • 参考文献(1)
  • 二级参考文献(7)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(8)
  • 参考文献(1)
  • 二级参考文献(7)
2012(4)
  • 参考文献(3)
  • 二级参考文献(1)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
信息处理
图模型
隐树模型
信息距离
模糊多特征
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子与信息学报
月刊
1009-5896
11-4494/TN
大16开
北京市北四环西路19号
2-179
1979
chi
出版文献量(篇)
9870
总下载数(次)
11
总被引数(次)
95911
论文1v1指导