基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
分析了SVM增量学习过程中,样本SV集跟非SV集的转化,考虑到初始非SV集和新增样本对分类信息的影响,改进了原有KKT条件,并结合改进了的错误驱动策略,提出了新的基于KKT条件下的错误驱动增量学习算法,在不影响处理速度的前提下,尽可能多的保留原始样本中的有用信息,剔除新增样本中的无用信息,提高分类器精度,最后通过实验表明该算法在优化分类器效果,提高分类器性能方面上有良好的作用。
推荐文章
基于驱动错误准则的SVM增量学习研究
机器学习
驱动错误准则
SVM
增量学习
基于KKT条件的SVM增量学习算法
支持向量机
增量学习
KKT条件
一种基于KKT条件和壳向量的SVM增量学习算法
SVM
增量学习
KKT条件
壳向量
一种新的SVM多层增量学习方法HISVML
支持向量机
增量学习
关键词学习
文本分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种新的基于KKT条件的错误驱动SVM增量学习算法
来源期刊 计算机系统应用 学科
关键词 增量学习 SVM KKT条件 错误驱动
年,卷(期) 2014,(1) 所属期刊栏目
研究方向 页码范围 144-148
页数 5页 分类号
字数 3533字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 姚明海 浙江工业大学信息工程学院 91 1088 17.0 30.0
2 张灿淋 浙江工业大学信息工程学院 3 11 2.0 3.0
3 童小龙 浙江工业大学信息工程学院 2 6 1.0 2.0
4 张何栋 浙江工业大学信息工程学院 1 5 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (32)
共引文献  (75)
参考文献  (5)
节点文献
引证文献  (5)
同被引文献  (12)
二级引证文献  (13)
1943(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(1)
  • 二级参考文献(0)
1967(2)
  • 参考文献(0)
  • 二级参考文献(2)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(6)
  • 引证文献(2)
  • 二级引证文献(4)
2018(3)
  • 引证文献(0)
  • 二级引证文献(3)
2019(6)
  • 引证文献(1)
  • 二级引证文献(5)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
增量学习
SVM
KKT条件
错误驱动
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机系统应用
月刊
1003-3254
11-2854/TP
大16开
北京中关村南四街4号
82-558
1991
chi
出版文献量(篇)
10349
总下载数(次)
20
总被引数(次)
57078
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导