基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
维度灾难、含有噪声数据和输入参数对领域知识的强依赖性,是不确定数据聚类领域中具有挑战性的问题。针对这些问题,基于相似性度量和凝聚层次聚类思想的基础上提出了高维不确定数据高效聚类HDUDEC(High Dimensional Un-certain Data Efficient Clustering)算法。该算法采用一个能够准确表达不确定高维对象之间的相似度的度量函数计算出对象之间的相似度,然后根据相似度阈值自底向上进行聚类分析。实验证明新的算法需要的先验知识较少、可以有效地过滤噪声数据、可以高效的获得任意形状的高维不确定聚类结果。
推荐文章
不确定数据信任密度峰值聚类算法
聚类
密度峰值
K近邻
证据推理
信任划分
不确定数据聚类算法研究
不确定数据
聚类
期望距离
UK均值算法
一种不确定数据流子空间聚类算法
不确定数据流
滑动窗口
聚类
子空间
缓冲区
离群点
基于网格密度和引力的不确定数据流聚类算法
不确定数据流
网格特征向量
网格密度
网格引力
零星网格
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 高维不确定数据高效聚类算法
来源期刊 电脑知识与技术:学术交流 学科 工学
关键词 高维不确定对象 凝聚层次聚类 相似性度量 不确定聚类
年,卷(期) 2014,(2) 所属期刊栏目
研究方向 页码范围 673-676
页数 4页 分类号 TP391.9
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (27)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
高维不确定对象
凝聚层次聚类
相似性度量
不确定聚类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导