作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Linear algebra provides insights into the description of elasticity without stress or strain. Classical descriptions of elasticity usually begin with defining stress and strain and the constitutive equations of the material that relate these to each other. Elasticity without stress or strain begins with the positions of the points and the energy of deformation. The energy of deformation as a function of the positions of the points within the material provides the material properties for the model. A discrete or continuous model of the deformation can be constructed by minimizing the total energy of deformation. As presented, this approach is limited to hyper-elastic materials, but is appropriate for infinitesimal and finite deformations, isotropic and anisotropic materials, as well as quasi-static and dynamic responses.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Linear Algebra Provides a Basis for Elasticity without Stress or Strain
来源期刊 软金属(英文) 学科 数学
关键词 ELASTICITY STRESS STRAIN FINITE ELASTICITY
年,卷(期) 2015,(3) 所属期刊栏目
研究方向 页码范围 25-34
页数 10页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
ELASTICITY
STRESS
STRAIN
FINITE
ELASTICITY
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软金属(英文)
季刊
2327-0799
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
14
总下载数(次)
0
总被引数(次)
0
论文1v1指导