基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The rapid growth of social networks has produced an unprecedented amount of user-generated data, which provides an excellent opportunity for text mining. Sentiment analysis, an important part of text mining, attempts to learn about the authors’ opinion on a text through its content and structure. Such information is particularly valuable for determining the overall opinion of a large number of people. Examples of the usefulness of this are predicting box office sales or stock prices. One of the most accessible sources of user-generated data is Twitter, which makes the majority of its user data freely available through its data access API. In this study we seek to predict a sentiment value for stock related tweets on Twitter, and demonstrate a correlation between this sentiment and the movement of a company’s stock price in a real time streaming environment. Both n-gram and “word2vec” textual representation techniques are used alongside a random forest classification algorithm to predict the sentiment of tweets. These values are then evaluated for correlation between stock prices and Twitter sentiment for that each company. There are significant correlations between price and sentiment for several individual companies. Some companies such as Microsoft and Walmart show strong positive correlation, while others such as Goldman Sachs and Cisco Systems show strong negative correlation. This suggests that consumer facing companies are affected differently than other companies. Overall this appears to be a promising field for future research.
推荐文章
一种分布式Twitter数据处理方案及应用
社交媒体
分布式处理框架
Twitter流式数据
流感疫情侦测
分布式计算
Twitter的Follow关系和Retweet关系对比
在线社交网络
网络数据分类
同质性
推特网
Hydrogeochemical processes and multivariate analysis for groundwater quality in the arid Maadher reg
Groundwater quality
Hydrogeochemical processes
Multivariate analysis
Salinity
Mio-Plio
Quaternary aquifer
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Sentiment Analysis of Investor Opinions on Twitter
来源期刊 社交网络(英文) 学科 医学
关键词 SENTIMENT Analysis Word2vec TEXT MINING TWITTER STOCK Prediction
年,卷(期) 2015,(3) 所属期刊栏目
研究方向 页码范围 62-71
页数 10页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
SENTIMENT
Analysis
Word2vec
TEXT
MINING
TWITTER
STOCK
Prediction
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
社交网络(英文)
季刊
2169-3285
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
112
总下载数(次)
0
论文1v1指导