基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In supervised learning, the imbalanced number of instances among the classes in a dataset can make the algorithms to classify one instance from the minority class as one from the majority class. With the aim to solve this problem, the KNN algorithm provides a basis to other balancing methods. These balancing methods are revisited in this work, and a new and simple approach of KNN undersampling is proposed. The experiments demonstrated that the KNN undersampling method outperformed other sampling methods. The proposed method also outperformed the results of other studies, and indicates that the simplicity of KNN can be used as a base for efficient algorithms in machine learning and knowledge discovery.
推荐文章
KNN文本分类算法研究
文本分类
KNN
向量空间模型
基于KNN的汉语问句分类
问句分类
语义相似度
KNN分类器
基于语义的Data Cube数字水印技术
数字水印
语义
数据立方体
版权
Using electrogeochemical approach to explore buried gold deposits in an alpine meadow-covered area
Electrogeochemistry
Buried mineral deposit
Ideal anomaly model
Alpine-meadow covered
Ihunze
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A KNN Undersampling Approach for Data Balancing
来源期刊 智能学习系统与应用(英文) 学科 医学
关键词 MACHINE LEARNING CLASS Overlaping Imbalanced Datases
年,卷(期) 2015,(4) 所属期刊栏目
研究方向 页码范围 104-116
页数 13页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
MACHINE
LEARNING
CLASS
Overlaping
Imbalanced
Datases
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能学习系统与应用(英文)
季刊
2150-8402
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
166
总下载数(次)
0
总被引数(次)
0
论文1v1指导