基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
A double optimal solution of an n-dimensional system of linear equations Ax=b has been derived in an affine m-dimensional Krylov subspace with m <<n.We further develop a double optimal iterative algorithm(DOIA),with the descent direction z being solved from the residual equation Az=r0 by using its double optimal solution,to solve ill-posed linear problem under large noise.The DOIA is proven to be absolutely convergent step-by-step with the square residual error ||r||^2=||b-Ax||^2 being reduced by a positive quantity ||Azk||^2 at each iteration step,which is found to be better than those algorithms based on the minimization of the square residual error in an m-dimensional Krylov subspace.In order to tackle the ill-posed linear problem under a large noise,we also propose a novel double optimal regularization algorithm(DORA)to solve it,which is an improvement of the Tikhonov regularization method.Some numerical tests reveal the high performance of DOIA and DORA against large noise.These methods are of use in the ill-posed problems of structural health-monitoring.
推荐文章
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Double Optimal Regularization Algorithms for Solving Ill-Posed Linear Problems under Large Noise
来源期刊 工程与科学中的计算机建模(英文) 学科 数学
关键词 ILL-POSED LINEAR equations system DOUBLE OPTIMAL solution Affine Krylov subspace DOUBLE OPTIMAL iterative ALGORITHM DOUBLE OPTIMAL REGULARIZATION ALGORITHM
年,卷(期) 2015,(1) 所属期刊栏目
研究方向 页码范围 1-39
页数 39页 分类号 O17
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
ILL-POSED
LINEAR
equations
system
DOUBLE
OPTIMAL
solution
Affine
Krylov
subspace
DOUBLE
OPTIMAL
iterative
ALGORITHM
DOUBLE
OPTIMAL
REGULARIZATION
ALGORITHM
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
工程与科学中的计算机建模(英文)
月刊
1526-1492
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
299
总下载数(次)
1
总被引数(次)
0
论文1v1指导