基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In order to effectively predict occurrence quantity of Myzus persicae,BP neural network theory and method was used to establish prediction model for occurrence quantity of M. persicae. Meanwhile,QPSO algorithm was used to optimize connection weight and threshold value of BP neural network,so as to determine the optimal connection weight and threshold value. The historical data of M. persica quantity in Hongta County,Yuxi City of Yunnan Province from 2003 to 2006 was adopted as training samples,and the occurrence quantities of M. persicae from 2007 to 2009 were predicted. The prediction accuracy was 99. 35%,the minimum completion time was 30 s,the average completion time was 34. 5 s,and the running times were 19. The prediction effect of the model was obviously superior to other prediction models. The experiment showed that this model was more effective and feasible,with faster convergence rate and stronger stability,and could solve the similar problems in prediction and clustering. The study provides a theoretical basis for comprehensive prevention and control against M. persicae.
推荐文章
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 QPSO-optimized BP Neural Network to Predict Oc- currence Quantity of Myzus persicae
来源期刊 Plant Diseases and Pests(植物病虫害研究:英文版) 学科 工学
关键词 神经网络预测 BP神经网络 发生量 粒子群算法 桃蚜 优化 预测模型 量子
年,卷(期) 2015,(1) 所属期刊栏目
研究方向 页码范围 1-3
页数 3页 分类号 TP183
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (35)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1996(4)
  • 参考文献(4)
  • 二级参考文献(0)
2004(8)
  • 参考文献(8)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
神经网络预测
BP神经网络
发生量
粒子群算法
桃蚜
优化
预测模型
量子
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
Plant Diseases and Pests(植物病虫害研究:英文版)
双月刊
2152-3932
安徽省合肥市农科南路40号
出版文献量(篇)
726
总下载数(次)
2
总被引数(次)
0
论文1v1指导