基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Sigma-Point Kalman Filters (SPKFs) are popular estimation techniques for high nonlinear system applications. The benefits of using SPKFs include (but not limited to) the following: the easiness of linearizing the nonlinear matrices statistically without the need to use the Jacobian matrices, the ability to handle more uncertainties than the Extended Kalman Filter (EKF), the ability to handle different types of noise, having less computational time than the Particle Filter (PF) and most of the adaptive techniques which makes it suitable for online applications, and having acceptable performance compared to other nonlinear estimation techniques. Therefore, SPKFs are a strong candidate for nonlinear industrial applications, i.e. robotic arm. Controlling a robotic arm is hard and challenging due to the system nature, which includes sinusoidal functions, and the dependency on the sensors’ number, quality, accuracy and functionality. SPKFs provide with a mechanism that reduces the latter issue in terms of numbers of required sensors and their sensitivity. Moreover, they could handle the nonlinearity for a certain degree. This could be used to improve the controller quality while reducing the cost. In this paper, some SPKF algorithms are applied to 4-DOF robotic arm that consists of one prismatic joint and three revolute joints (PRRR). Those include the Unscented Kalman Filter (UKF), the Cubature Kalman Filter (CKF), and the Central Differences Kalman Filter (CDKF). This study gives a study of those filters and their responses, stability, robustness, computational time, complexity and convergences in order to obtain the suitable filter for an experimental setup.
推荐文章
基于Sigma-point设备可靠性抽样检测技术研究
OED
西格玛点
参数不确定性
费舍尔信息矩阵
Director 中cue point(线索点)声音同步控制技术
多媒体技术
Director 声音
线索点
改进 Point-Voxel 特征提取的3D 小目标检测
特征提取
目标检测
下采样
特征融合
多通道
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Sigma-Point Filters in Robotic Applications
来源期刊 智能控制与自动化(英文) 学科 医学
关键词 SIGMA POINT Unscented KALMAN FILTER CUBATURE KALMAN FILTER Centeral Difference KALMAN FILTER Filtering Estimation ROBOTIC Arm PRRR
年,卷(期) 2015,(3) 所属期刊栏目
研究方向 页码范围 168-183
页数 16页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
SIGMA
POINT
Unscented
KALMAN
FILTER
CUBATURE
KALMAN
FILTER
Centeral
Difference
KALMAN
FILTER
Filtering
Estimation
ROBOTIC
Arm
PRRR
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能控制与自动化(英文)
季刊
2153-0653
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
250
总下载数(次)
0
总被引数(次)
0
论文1v1指导