基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
This study was proposed to develop a new method for hydrogen production in significant amounts. It consisted in using sulfur dioxide (SO2), and discharged from the sulfuric acid (H2SO4) production unit. This process could be considered as an alternative to many classical processes for air quality treatment resulting in as afer environment. Furthermore, it was an innovative method for hydrogen production. In fact, SO2 was fed into a PEM electrolyzer stack. The dissolved SO2 was oxidized at the anode which led to the production of sulfuric acid;whereas, hydrogen (H2) was produced at the cathode. This new method was able to treat 3.7 t/day of SO22 in order to produce 0.116 t/day of hydrogen and recover 5.6 t/day of 35 wt.% H2SO4. Results showed that the studied procedure was more economical in terms of energy consumption than the Westinghouse hybrid process. Hence, 67% of the energy needed for the decomposition step was reduced by our proposed process. After the presentation of the principles of the new process design, each part of the process was sized. The calculations showed that the number of electrolyzers could be calculated using the same formula used for the number of electrolyzers for water electrolysis or flux cell.
推荐文章
Effect on greenhouse gas balance of converting rice paddies to vegetable production
Greenhouse gas balance
Land management change
CH4
N2O
Soil organic carbon
Effect on greenhouse gas balance of converting rice paddies to vegetable production
Greenhouse gas balance
Land management change
CH4
N2O
Soil organic carbon
An experimental study on dynamic coupling process of alkaline feldspar dissolution and secondary min
Alkaline feldspar
Dissolution rate
Precipitation
Mineral conversion
Secondary porosity
The hydrogen and oxygen isotopic compositions of hydroxyl in clay mineral from a weathering profile:
Weathering profile
Hydrogen and oxygen isotopes
Hydroxyl
Kaolinite
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A New Industrial Hydrogen Production Process
来源期刊 绿色与可持续化学(英文) 学科 医学
关键词 ELECTROCHEMICAL Cycle ELECTROLYZER Environment HYDROGEN Production ATMOSPHERIC POLLUTION SULFUR Dioxide
年,卷(期) 2015,(4) 所属期刊栏目
研究方向 页码范围 145-153
页数 9页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
ELECTROCHEMICAL
Cycle
ELECTROLYZER
Environment
HYDROGEN
Production
ATMOSPHERIC
POLLUTION
SULFUR
Dioxide
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
绿色与可持续化学(英文)
季刊
2160-6951
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
188
总下载数(次)
0
总被引数(次)
0
论文1v1指导