基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The digital images have been studied for image classification, enhancement, image compression and image segmentation purposes. In the present work, it is proposed to study the effects of feature selection algorithm on the predictive classification accuracy of algorithms used for discriminating the different plant leaf images. The process involves extracting the important texture features from the digital images and then subjecting them to feature selection and further classification process. The leaf image features have been extracted by using Gabor texture features and these Gabor features are subjected to Random Forest feature selection algorithm for extracting important texture features. The four classification algorithms like K-Nearest Neighbour, J48, Classification and Regression Trees and Random Forest have been used for classification purpose. This study shows that there is a net improvement in the predictive classification accuracy values, when classification algorithms have been applied on selected features over the complete set of features.
推荐文章
基于Feature的WEB GIS空间信息共享方案的研究
GIS
WEB GIS
FEATURE
空间信息共享
基于Titan Image软件的QuickBird影像融合
Titan Image
QuickBird
影像融合
质量评价
Image J软件在象牙鉴定中的应用
象牙
物种鉴定
施氏角
Image J软件
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Role of Feature Selection on Leaf Image Classification
来源期刊 数据分析和信息处理(英文) 学科 工学
关键词 LEAF Image FEATURE Selection Algorithm Random FOREST GABOR TEXTURE Features
年,卷(期) 2015,(4) 所属期刊栏目
研究方向 页码范围 175-183
页数 9页 分类号 TP39
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
LEAF
Image
FEATURE
Selection
Algorithm
Random
FOREST
GABOR
TEXTURE
Features
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据分析和信息处理(英文)
季刊
2327-7211
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
106
总下载数(次)
0
总被引数(次)
0
论文1v1指导