基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Privacy preserving data mining (PPDM) has become more and more important because it allows sharing of privacy sensitive data for analytical purposes. A big number of privacy techniques were developed most of which used the k-anonymity property which have many shortcomings, so other privacy techniques were introduced (l-diversity, p-sensitive k-anonymity, (α, k)-anonymity, t-closeness, etc.). While they are different in their methods and quality of their results, they all focus first on masking the data, and then protecting the quality of the data. This paper is concerned with providing an enhanced privacy technique that combines some anonymity techniques to maintain both privacy and data utility by considering the sensitivity values of attributes in queries using sensitivity weights which determine taking in account utility-based anonymization and then only queries having sensitive attributes whose values exceed threshold are to be changed using generalization boundaries. The threshold value is calculated depending on the different weights assigned to individual attributes which take into account the utility of each attribute and those particular attributes whose total weights exceed the threshold values is changed using generalization boundaries and the other queries can be directly published. Experiment results using UT dallas anonymization toolbox on real data set adult database from the UC machine learning repository show that although the proposed technique preserves privacy, it also can maintain the utility of the publishing data.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Determination of brominated diphenyl ethers in atmospheric particulate matter using selective pressu
Brominated diphenyl ethers
Atmospheric particulate matters
Selective pressurised liquid extraction
Gas chromatography-mass spectrometry
(p,a)-sensitive k-匿名隐私保护模型
数据发布
敏感度
K-匿名
隐私泄露
分组
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Utility-Based Anonymization Using Generalization Boundaries to Protect Sensitive Attributes
来源期刊 信息安全(英文) 学科 医学
关键词 PRIVACY PRIVACY PRESERVING Data Mining K-ANONYMITY GENERALIZATION Boundaries Suppression
年,卷(期) 2015,(3) 所属期刊栏目
研究方向 页码范围 179-196
页数 18页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
PRIVACY
PRIVACY
PRESERVING
Data
Mining
K-ANONYMITY
GENERALIZATION
Boundaries
Suppression
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息安全(英文)
季刊
2153-1234
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
230
总下载数(次)
0
总被引数(次)
0
论文1v1指导