基于电子系统状态监测为研究背景,传统的Kernel Principal Component Analysis(核主成份分析法,简称KPCA)在状态监测过程中做数据特征降维处理,使得电路状态数据在消除冗余信息的同时,也能在相应的模型算法计算中很大程度的减少计算步骤,但是KPCA法的降维数据处理过程对数据样本贡献率的识别能力有不足之处,虽然达到了降维的目的,但是对特征样本数据的信息保留能力存在不足。本文中采用经验模态分解法(Empirical Mode Decomposition,简称 EMD)对输出信号进行采集处理作为样本数据,设计基于 Fisher准则的状态信息识别能力分析,采用 Estimation of Distribution Algorithms(种群算法,简称 EDA)对KPCA分析法进行改进研究,通过对数据处理,最大限度的保留状态主信息,使得在电路系统状态监测过程中减小实验误差,为后续故障预测打下基础。