基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In the face of a growing number of large-scale data sets, affinity propagation clustering algorithm to calculate the process required to build the similarity matrix, will bring huge storage and computation. Therefore, this paper proposes an improved affinity propagation clustering algorithm. First, add the subtraction clustering, using the density value of the data points to obtain the point of initial clusters. Then, calculate the similarity distance between the initial cluster points, and reference the idea of semi-supervised clustering, adding pairs restriction information, structure sparse similarity matrix. Finally, the cluster representative points conduct AP clustering until a suitable cluster division.Experimental results show that the algorithm allows the calculation is greatly reduced, the similarity matrix storage capacity is also reduced, and better than the original algorithm on the clustering effect and processing speed.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Semi-supervised Affinity Propagation Clustering Based on Subtractive Clustering for Large-Scale Data Sets
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 subtractive CLUSTERING initial cluster AFFINITY PROPAGATION CLUSTERING SEMI-SUPERVISED CLUSTERING LARGE-SCALE data SETS
年,卷(期) 2015,(1) 所属期刊栏目
研究方向 页码范围 76-77
页数 2页 分类号 C5
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
subtractive
CLUSTERING
initial
cluster
AFFINITY
PROPAGATION
CLUSTERING
SEMI-SUPERVISED
CLUSTERING
LARGE-SCALE
data
SETS
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导