基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In this paper, artificial neural networks are used for predicting single fiber efficiency in the process of removing smaller particles from gas stream by fiber filters. For this, numerical simulations are obtained of a classic model of literature for fiber efficiency, which is numerically solved along with the convection diffusion equation in polar coordinates for particle concentration, with associated initial and boundary conditions. A sufficient number of examples from two numerical simulations are employed to construct a database, from which parameters of a novel neural model are adjusted. This model is constructed based on the back propagation algorithm in order to map two features, namely Peclet number and packing density, which are extracted from the numerical simulations into the corresponding single fiber efficiency. The results indicate that the developed neural model can be trained in a reasonable computational time and is capable of estimating single fiber efficiency from examples of the test set with a maximum error of 1.7%.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Predicting of the Fibrous Filters Efficiency for the Removal Particles from Gas Stream by Artificial Neural Network
来源期刊 化学工程与科学期刊(英文) 学科 数学
关键词 Artificial Neural Network BACK PROPAGATION Algorithm Fiber FILTERS Particle CAPTURE
年,卷(期) 2015,(3) 所属期刊栏目
研究方向 页码范围 317-327
页数 11页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Artificial
Neural
Network
BACK
PROPAGATION
Algorithm
Fiber
FILTERS
Particle
CAPTURE
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
化学工程与科学期刊(英文)
季刊
2160-0392
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
386
总下载数(次)
0
论文1v1指导