基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
This paper deals with the Bayesian inferences of unknown parameters of the progressively Type II censored Weibull-geometric (WG) distribution. The Bayes estimators cannot be obtained in explicit forms of the unknown parameters under a squared error loss function. The approximate Bayes estimators will be computed using the idea of Markov Chain Monte Carlo (MCMC) method to generate from the posterior distributions. Also the point estimation and confidence intervals based on maximum likelihood and bootstrap technique are also proposed. The approximate Bayes estimators will be obtained under the assumptions of informative and non-informative priors are compared with the maximum likelihood estimators. A numerical example is provided to illustrate the proposed estimation methods here. Maximum likelihood, bootstrap and the different Bayes estimates are compared via a Monte Carlo Simulation study
推荐文章
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Estimations of Weibull-Geometric Distribution under Progressive Type II Censoring Samples
来源期刊 统计学期刊(英文) 学科 数学
关键词 Weibull-Geometric Distribution Progressive Type II CENSORING SAMPLES Bayesian ESTIMATION Maximum LIKELIHOOD ESTIMATION Bootstrap CONFIDENCE INTERVALS Markov Chain Monte Carlo
年,卷(期) 2015,(7) 所属期刊栏目
研究方向 页码范围 721-729
页数 9页 分类号 O21
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Weibull-Geometric
Distribution
Progressive
Type
II
CENSORING
SAMPLES
Bayesian
ESTIMATION
Maximum
LIKELIHOOD
ESTIMATION
Bootstrap
CONFIDENCE
INTERVALS
Markov
Chain
Monte
Carlo
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
统计学期刊(英文)
半月刊
2161-718X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
584
总下载数(次)
0
总被引数(次)
0
论文1v1指导