原文服务方: 控制理论与应用       
摘要:
针对高炉料位难以连续高精度测量的问题,提出了一种基于分段线性回归和动态加权神经网络的高炉料位信息预测方法.首先,通过分析高炉布料机制和料位检测数据特点,提出了一种面向雷达和机械探尺检测数据时间序列的联合划分方法,用于提取高炉料位的周期性变化特征;然后,利用该变化特征构建分段线性回归模型,获得能准确描述料位变化的回归曲线;最后,以回归统计指标为权重调节系数,利用动态加权径向基神经网络对料位信息进行预测.实例验证表明,该方法融合了机械探尺检测数据精度高以及雷达检测数据连续性好的特点,实现了高炉料位信息的实时有效预测.
推荐文章
基于广义回归网络的动态权重回归型神经网络集成方法研究
神经网络集成
BP网络
动态权重
广义回归神经网络
基于神经网络的高炉炉温预测模型的研究
铁水硅含量
RBF神经网络
预测模型
能耗
基于两种探尺数据融合的高炉料位检测方法
高炉料位
机械探尺
雷达探尺
模糊GK聚类
RBF网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 分段线性回归和动态加权神经网络融合的高炉料位预测
来源期刊 控制理论与应用 学科
关键词 高炉 料位 预测 分段线性回归 动态加权 神经网络
年,卷(期) 2015,(6) 所属期刊栏目 短文
研究方向 页码范围 801-809
页数 9页 分类号 TP273
字数 语种 中文
DOI 10.7641/CTA.2015.50033
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 阳春华 中南大学信息科学与工程学院 389 3229 27.0 37.0
2 桂卫华 中南大学信息科学与工程学院 695 7452 38.0 56.0
3 谢永芳 中南大学信息科学与工程学院 101 578 12.0 18.0
4 蒋朝辉 中南大学信息科学与工程学院 34 240 10.0 13.0
5 李晞月 中南大学信息科学与工程学院 1 11 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (36)
共引文献  (28)
参考文献  (12)
节点文献
引证文献  (11)
同被引文献  (26)
二级引证文献  (22)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(7)
  • 参考文献(2)
  • 二级参考文献(5)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(5)
  • 参考文献(3)
  • 二级参考文献(2)
2012(3)
  • 参考文献(3)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(3)
  • 引证文献(2)
  • 二级引证文献(1)
2017(2)
  • 引证文献(0)
  • 二级引证文献(2)
2018(10)
  • 引证文献(5)
  • 二级引证文献(5)
2019(11)
  • 引证文献(2)
  • 二级引证文献(9)
2020(7)
  • 引证文献(2)
  • 二级引证文献(5)
研究主题发展历程
节点文献
高炉
料位
预测
分段线性回归
动态加权
神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
控制理论与应用
月刊
1000-8152
44-1240/TP
大16开
1984-01-01
chi
出版文献量(篇)
4979
总下载数(次)
0
总被引数(次)
72515
论文1v1指导