基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Accurate and automatic segmentation of hyper-acute ischemic infarct from magnetic resonance imaging is of great importance in clinical trials. Manual delineation is labor intensive, exhibits great variability due to unclear infarct boundaries, and most importantly, is not practical due to urgent time requirement for prompt therapy. In this paper, segmentation of hyper-acute ischemic infarcts from diffusion weighted imaging based on Support Vector Machine (SVM) is explored. Experiments showed that SVM could provide good agreement with manual delineations by experienced experts to achieve an average Dice coefficient of 0.7630.121. The proposed method could achieve significantly higher segmentation accuracy and could be a potential tool to assist clinicians for quantifying hyper-acute infarction and decision making especially for thrombolytic therapy.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Diffusion in garnet: a review
High temperature and high pressure
Diffusion
Garnet
Point defects
Lithium elemental and isotopic disequilibrium in minerals from peridotite xenoliths from Shangzhi, N
Mantle peridotite
Li isotope
Mantle metasomatism
Northeastern China
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Segmentation of Hyper-Acute Ischemic Infarcts from Diffusion Weighted Imaging Based on Support Vector Machine
来源期刊 电脑和通信(英文) 学科 医学
关键词 ISCHEMIC STROKE INFARCT Segmentation Feature Selection SVM
年,卷(期) 2015,(11) 所属期刊栏目
研究方向 页码范围 152-157
页数 6页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
ISCHEMIC
STROKE
INFARCT
Segmentation
Feature
Selection
SVM
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑和通信(英文)
月刊
2327-5219
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
783
总下载数(次)
0
总被引数(次)
0
论文1v1指导